Welcome to Kun's Personal Website

I'm Kun Qian (钱坤), a Senior Machine Learning Manager and Researcher at Adobe, with a passion for both scientific research and real-world impact. My work has evolved from theoretical data integration research during my PhD at UC Santa Cruz to applied machine learning and AI.

I earned my PhD under the guidance of Balder ten Cate, Phokion Kolaitis, and Wang-Chiew Tan. My primary focus was on approximation algorithms for data integration problems. Afterward, I joined IBM Research, where I developed machine learning systems for low-resource settings, combining deep learning, human-in-the-loop approaches, and weak supervision. My work at IBM resulted in over 20 publications at top AI and CS conferences. I later worked at Amazon's Search Science and AI group, improving search experiences for millions of customers, and at Apple, where I led the creation of a knowledge graph for Apple's user queries. Now, I’m at Adobe, building an intelligent AI Assistant for marketers.

Outside of work, I enjoy reading, movies, traveling, and cooking Szechuan cuisine, which I believe rivals many west coast restaurants. Originally from Chongqing, China, I now live with my wife and son in the Seattle area after spending 9 years in the Bay Area.

Curriculum Vitae

Research & Publications

Research Interests: information extraction, large language models, human-in-the-loop machine learning, active learning, weak supervision, deep learning, explainable AI, data integration and data exchange, multilingual search.

I have broad research interests ranging from theoretical problems in data exchange to, more recently, machine learning with small data. Explainable AI (XAI) Research is another area that I am recently interested in (please check out our project website).

My work has been published in various notable AI/NLP/DB/HCI conferences and journals including: AAAI, ACL, EMNLP, COLING, VLDB, PODS, ICDE, TODS, CIKM, IUI, ACM DIS, ISWC, etc. with a best demo award at ISWC 2020, and a DSRI AI Incidents and Best Practices Paper Award at IAAI 2025. I also actively review papers for research conferences and journals to serve our research community. My publications (since 2015) are listed below:

(New) EVOSCHEMA: Toward Text-to-SQL Robustness Against Schema Evolution (full)
Tianshu Zhang, Kun Qian, Siddhartha Sahai, Yuan Tian, Shaddy Garg, Huan Sun, Yunyao Li
(VLDB 2025)pdf
Work done at Adobe
(New) Adobe Summit Concierge Evaluation with human in the loop (full)
Yiru Chen, Sally Fang, Sai Sree Harsha, Dan Luo, Vaishnavi Muppala, Fei Wu, Shun Jiang, Kun Qian, Yunyao Li
(DaSH 2025)pdf
Work done at Adobe
Evaluation and Incident Prevention in an Enterprise AI Assistant (full)
Akash V Maharaj, David Arbour, Daniel Lee, Uttaran Bhattacharya, Anup Rao, Austin Zane, Avi Feller, Kun Qian, Yunyao Li
(IAAI 2025)pdf
Best Paper
Work done at Adobe
DaSH - Data Science with Human-in-the-loop (workshop co-chair) (workshop)
Eduard Dragut, Lucian Popa, Yunyao Li, Kun Qian, Sherry Wu
(VLDB 2025)pdf
Work done at Adobe
FISQL: Enhancing Text-to-SQL Systems with Rich Interactive Feedback (full)
Rakesh Menon, Kun Qian, Liqun Chen, Ishika Joshi, Daniel Pandyan, Shashank Srivastava, Yunyao Li
(EDBT 2025)pdf
Work done at Adobe
Time Sensitive Knowledge Editing through Efficient Finetuning (short)
Xiou Ge, Ali Mousavi, Edouard Grave, Armand Joulin, Kun Qian, Ben Han, Mostafa Arefiyan, Yunyao Li
(ACL 2024)pdf
Work done at Apple
Evaluation and Continual Improvement for an Enterprise AI Assistant (short)
Akash V. Maharaj, Kun Qian, Uttaran Bhattacharya, Sally Fang, Horia Galatanu, Manas Garg, Rachel Hanessian, Nishant Kapoor, Ken Russell, Shivakumar Vaithyanathan, Yunyao Li
(DaSH@NAACL 2024)pdf
Work done at Adobe
APE: Active Learning-based Tooling for Finding Informative Few-shot Examples for LLM-based Entity Matching (short)
Kun Qian, Yisi Sang, Farima Bayat, Anton Belyy, Xianqi Chu, Yash Govind, Samira Khorshidi, Rahul Khot, Katherine Luna, Azadeh Nikfarjam, Xiaoguang Qi, Fei Wu, Xianhan Zhang, Yunyao Li
(DaSH@NAACL 2024)pdf
Work done at Apple
FLEEK: Factual Error Detection and Correction with Evidence Retrieved from External Knowledge (demo)
Farima Fatahi Bayat, Kun Qian, Ben Han, Yisi Sang, Anton Belyi, Samira Khorhshidi, Fei Wu, Ihab Ilyas, Yunyao Li
(EMNLP 2023)pdfvideo
Work done at Apple
(Intern project that I mentored)
Improving Human Annotation Effectiveness for Fact Collection by Identifying the Most Relevant Answers. (regular)
Pranav Kamath, Yiwen Sun, Thomas Semere, Adam Green, Scott Manle, Xiaoguang Qi, Kun Qian, Yunyao Li
(DaSH@EMNLP 2022)pdfbibtex
Work done at Apple
Explainability for Natural Language Processing. (tutorial)
Shipi Dhanorkar, Marina Danilevsky, Yunyao Li, Lucian Popa, Kun Qian, Anbang Xu
(SIGKDD 2021)link
Work done at IBM Research
Who needs to know what, when?: Broadening the Explainable AI (XAI) Design Space by Looking at Explanations Across the AI Lifecycle  (regular)
Shipi Dhanorkar, Christine T Wolf, Kun Qian, Anbang Xu, Lucian Popa, Yunyao Li
(DIS 2021)
Work done at IBM Research
(Intern project that I mentored)
XNLP: A Living Survey for XAI Research in Natural Language Processing (demo)
Kun Qian, Marina Danilevsky, Yannis Katsis, Ban Kawas, Erick Oduor, Lucian Popa, Yunyao Li
(IUI 2021)pdflinkbibtex
Work done at IBM Research
Learning Structured Representations of Entity Names using Active Learning and Weak Supervision (short)
Kun Qian, Poornima Chozhiyath Raman, Lucian Popa, Yunyao Li
(EMNLP 2020)pdfbibtex
Work done at IBM Research
(Acceptance rate: 16.7% - short paper)
A Survey of the State of Explainable AI for Natural Language Processing (regular)
Marina Danilevsky, Kun Qian, Ranit Aharonov, Yannis Katasis, Ban Kawas, Prithviraj Sen
(AACL-IJCNLP 2020)pdfbibtex
Work done at IBM Research
Ontology Mediated Information Extraction with MASTRO SYSTEM-T (demo)
Domenico Lembo, Yunyao Li, Lucian Popa, Kun Qian, Federico Scafoglieri
(ISWC 2020)pdfbibtex
Best Post/Demo
Work done at IBM Research
(Intern project that I mentored)
Explainability for Natural Language Processing. (tutorial)
Shipi Dhanorkar, Yunyao Li, Lucian Popa, Kun Qian, Christine T Wolf, Anbang Xu
(AACL-IJCNLP 2020)pdfvideo
Work done at IBM Research
An Intuitive User Interface for Human-in-the-loop Entity Name Parsing and Entity Variant Generation. (regular)
Kun Qian, Lucian Popa, Yunyao Li
(DaSH@KDD 2020)pdf
Work done at IBM Research
Answering Complex Questions by Combining Information from Curatedand Extracted Knowledge Bases. (regular)
Nikita Bhutani, Xinyi Zheng, Kun Qian, Yunyao Li, H.V. Jagadish
(ACL-NLI 2020)pdfbibtex
Work done at IBM Research
XAIT: An Interactive Website for Explainable AI for Text. (demo)
Eno Oduor, Kun Qian, Yunyao Li, Lucian Popa
(IUI 2020)pdfbibtex
Work done at IBM Research
PARTNER: Human-in-the-loop Entity Understanding with Deep Learning. (demo)
Kun Qian, Poornima Chozhiyath Raman, Yunyao Li, Lucian Popa
(AAAI 2020)pdfvideobibtex
Work done at IBM Research
Learning-based Human-in-the-loop Methods for Entity Resolution. (tutorial)
Sairam Gurajada, Lucian Popa, Kun Qian, Prithviraj Sen
(CIKM 2019)pdfbibtex
Work done at IBM Research
Learning Explainable Entity Resolution Algorithms for Small Business Data using SystemER. (workshop)
Kun Qian, Douglas R Burdick, Sairam Gurajada, Lucian Popa
(DSMM'19 @ SIGMOD'19)pdfbibtex
Work done at IBM Research
Low-resource Deep Entity Resolution with Transfer and Active Learning. (regular)
Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, Lucian Popa
(ACL 2019)pdfbibtex
Work done at IBM Research
(Intern project that I mentored)
SystemER: A Human-in-the-loop System for Explainable Entity Resolution. (demo)
Kun Qian, Lucian Popa, Prithviraj Sen
(VLDB 2019)pdfvideobibtex
Work done at IBM Research
Knowledge Refinement via Rule Selection. (regular)
Phokion G. Kolaitis, Lucian Popa, Kun Qian
(AAAI 2019)pdfbibtex
Work done at IBM Research
(Acceptance rate: 16.2%)
Exploiting Structure in Representation of Named Entities using Active Learning (regular)
Nikita Bhutani, Kun Qian, Yunyao Li, H.V. Jagadish, Mauricio A. Hernandez., Mitesh Vasa
(COLING 2018)pdfbibtex
Work done at IBM Research
(Intern project that I mentored)
LUSTRE: An Interactive System for Entity Structured Representation and Variant Generation. (demo)
Kun Qian, Nikita Bhutani, Yunyao Li, H.V. Jagadish, Mauricio A. Hernandez.
(ICDE 2018)pdfvideobibtex
Work done at IBM Research
(Intern project that I mentored)
Active Learning of GAV Schema Mappings. (regular)
Balder ten Cate, Phokion G. Kolaitis, Kun Qian, Wang-Chiew Tan
(PODS 2018)pdfvideobibtex
Work done at UC Santa Cruz
Active Learning for Large-Scale Entity Resolution. (regular)
Kun Qian, Lucian Popa, Prithviraj Sen
(CIKM 2017)pdfbibtex
Work done at IBM Research/UC Santa Cruz
Approximation Algorithms for Schema-Mapping Discovery from Data Examples. (regular)
Balder ten Cate, Phokion G. Kolaitis, Kun Qian, Wang-Chiew Tan
(ACM TODS, Vol.42, No.2, Article 12)pdfbibtex
Work done at UC Santa Cruz
Approximation Algorithms for Schema-Mapping Discovery from Data Examples. (regular)
Balder ten Cate, Phokion G. Kolaitis, Kun Qian, Wang-Chiew Tan
(AMW 2015)pdf
Work done at UC Santa Cruz
(To appear) EVOSCHEMA: Toward Text-to-SQL Robustness Against Schema Evolution
Tianshu Zhang, Kun Qian, Siddhartha Sahai, Yuan Tian, Shaddy Garg, Huan Sun, Yunyao Li
(VLDB 2025)pdfvideowebpage
(To appear) Adobe Summit Concierge Evaluation with human in the loop
Yiru Chen, Sally Fang, Sai Sree Harsha, Dan Luo, Vaishnavi Muppala, Fei Wu, Shun Jiang, Kun Qian, Yunyao Li
(DaSH 2025)pdfvideowebpage
Evaluation and Incident Prevention in an Enterprise AI Assistant
Akash V Maharaj, David Arbour, Daniel Lee, Uttaran Bhattacharya, Anup Rao, Austin Zane, Avi Feller, Kun Qian, Yunyao Li
DaSH - Data Science with Human-in-the-loop (workshop co-chair)
Eduard Dragut, Lucian Popa, Yunyao Li, Kun Qian, Sherry Wu
(VLDB 2025)pdfvideowebpage
FISQL: Enhancing Text-to-SQL Systems with Rich Interactive Feedback
Rakesh Menon, Kun Qian, Liqun Chen, Ishika Joshi, Daniel Pandyan, Shashank Srivastava, Yunyao Li
(EDBT 2025)pdfwebpage
Time Sensitive Knowledge Editing through Efficient Finetuning
Xiou Ge, Ali Mousavi, Edouard Grave, Armand Joulin, Kun Qian, Ben Han, Mostafa Arefiyan, Yunyao Li
(ACL 2024)pdfwebpage
Evaluation and Continual Improvement for an Enterprise AI Assistant
Akash V. Maharaj, Kun Qian, Uttaran Bhattacharya, Sally Fang, Horia Galatanu, Manas Garg, Rachel Hanessian, Nishant Kapoor, Ken Russell, Shivakumar Vaithyanathan, Yunyao Li
(DaSH@NAACL 2024)pdfwebpage
APE: Active Learning-based Tooling for Finding Informative Few-shot Examples for LLM-based Entity Matching
Kun Qian, Yisi Sang, Farima Bayat, Anton Belyy, Xianqi Chu, Yash Govind, Samira Khorshidi, Rahul Khot, Katherine Luna, Azadeh Nikfarjam, Xiaoguang Qi, Fei Wu, Xianhan Zhang, Yunyao Li
(DaSH@NAACL 2024)pdfwebpage
Improving Human Annotation Effectiveness for Fact Collection by Identifying the Most Relevant Answers.
Pranav Kamath, Yiwen Sun, Thomas Semere, Adam Green, Scott Manle, Xiaoguang Qi, Kun Qian, Yunyao Li
(DaSH@EMNLP 2022)pdfwebpagebibtex
Who needs to know what, when?: Broadening the Explainable AI (XAI) Design Space by Looking at Explanations Across the AI Lifecycle
Shipi Dhanorkar, Christine T Wolf, Kun Qian, Anbang Xu, Lucian Popa, Yunyao Li
(DIS 2021)webpage
Learning Structured Representations of Entity Names using Active Learning and Weak Supervision
Kun Qian, Poornima Chozhiyath Raman, Lucian Popa, Yunyao Li
(EMNLP 2020)pdfwebpagebibtex
A Survey of the State of Explainable AI for Natural Language Processing
Marina Danilevsky, Kun Qian, Ranit Aharonov, Yannis Katasis, Ban Kawas, Prithviraj Sen
(AACL-IJCNLP 2020)pdfwebpagebibtex
An Intuitive User Interface for Human-in-the-loop Entity Name Parsing and Entity Variant Generation.
Kun Qian, Lucian Popa, Yunyao Li
(DaSH@KDD 2020)pdfwebpage
Answering Complex Questions by Combining Information from Curatedand Extracted Knowledge Bases.
Nikita Bhutani, Xinyi Zheng, Kun Qian, Yunyao Li, H.V. Jagadish
(ACL-NLI 2020)pdfwebpagebibtex
Learning Explainable Entity Resolution Algorithms for Small Business Data using SystemER.
Kun Qian, Douglas R Burdick, Sairam Gurajada, Lucian Popa
(DSMM'19 @ SIGMOD'19)pdfwebpagebibtex
Low-resource Deep Entity Resolution with Transfer and Active Learning.
Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, Lucian Popa
(ACL 2019)pdfwebpagebibtex
Knowledge Refinement via Rule Selection.
Phokion G. Kolaitis, Lucian Popa, Kun Qian
(AAAI 2019)pdfwebpagebibtex
Exploiting Structure in Representation of Named Entities using Active Learning
Nikita Bhutani, Kun Qian, Yunyao Li, H.V. Jagadish, Mauricio A. Hernandez., Mitesh Vasa
(COLING 2018)pdfvideowebpagebibtex
Active Learning of GAV Schema Mappings.
Balder ten Cate, Phokion G. Kolaitis, Kun Qian, Wang-Chiew Tan
(PODS 2018)pdfvideowebpagebibtex
Active Learning for Large-Scale Entity Resolution.
Kun Qian, Lucian Popa, Prithviraj Sen
(CIKM 2017)pdfwebpagebibtex
Approximation Algorithms for Schema-Mapping Discovery from Data Examples.
Balder ten Cate, Phokion G. Kolaitis, Kun Qian, Wang-Chiew Tan
(ACM TODS, Vol.42, No.2, Article 12)pdfwebpagebibtex
Approximation Algorithms for Schema-Mapping Discovery from Data Examples.
Balder ten Cate, Phokion G. Kolaitis, Kun Qian, Wang-Chiew Tan
(AMW 2015)pdfwebpage
FLEEK: Factual Error Detection and Correction with Evidence Retrieved from External Knowledge
Farima Fatahi Bayat, Kun Qian, Ben Han, Yisi Sang, Anton Belyi, Samira Khorhshidi, Fei Wu, Ihab Ilyas, Yunyao Li
(EMNLP 2023)pdfvideo
XNLP: A Living Survey for XAI Research in Natural Language Processing
Kun Qian, Marina Danilevsky, Yannis Katsis, Ban Kawas, Erick Oduor, Lucian Popa, Yunyao Li
(IUI 2021)pdfbibtex
Ontology Mediated Information Extraction with MASTRO SYSTEM-T
Domenico Lembo, Yunyao Li, Lucian Popa, Kun Qian, Federico Scafoglieri
(ISWC 2020)pdfbibtex
Best Post/Demo
XAIT: An Interactive Website for Explainable AI for Text.
Eno Oduor, Kun Qian, Yunyao Li, Lucian Popa
(IUI 2020)pdfbibtex
PARTNER: Human-in-the-loop Entity Understanding with Deep Learning.
Kun Qian, Poornima Chozhiyath Raman, Yunyao Li, Lucian Popa
(AAAI 2020)pdfvideobibtex
SystemER: A Human-in-the-loop System for Explainable Entity Resolution.
Kun Qian, Lucian Popa, Prithviraj Sen
(VLDB 2019)pdfvideobibtex
LUSTRE: An Interactive System for Entity Structured Representation and Variant Generation.
Kun Qian, Nikita Bhutani, Yunyao Li, H.V. Jagadish, Mauricio A. Hernandez.
(ICDE 2018)pdfvideobibtex
Explainability for Natural Language Processing.
Shipi Dhanorkar, Marina Danilevsky, Yunyao Li, Lucian Popa, Kun Qian, Anbang Xu
(SIGKDD 2021)
Explainability for Natural Language Processing.
Shipi Dhanorkar, Yunyao Li, Lucian Popa, Kun Qian, Christine T Wolf, Anbang Xu
(AACL-IJCNLP 2020)pdfvideo
Learning-based Human-in-the-loop Methods for Entity Resolution.
Sairam Gurajada, Lucian Popa, Kun Qian, Prithviraj Sen
(CIKM 2019)pdfbibtex

Award(s)

Best Post/Demo Award @ The 19th International Semantic Web Conference (ISWC 2020)

Experience

2024.02 - Now   Sr. Machine Learning Manager (since 2024.09)Adobe
  Sr. Machine Learning Engineer
2022.03 - 2024.01   Senior Machine Learning Researcher and Engineer      Apple
2021.03 - 2022.06   Applied ScientstAmazon
2017.02 - 2021.03   Research Scientist    IBM Research
2010.10 - 2011.08  Project OfficerNanyang Technological University

Education

Ph.D. - University of California, Santa Cruz
M.S. - Beihang University
  • Visited Kyushu University as exchange student
  • B.S. - Chongqing University

    Professional Services

    Conference PC:   PVLDB (2022, 2023, 2024), EMNLP (2022, 2021), DaSH@KDD 2021, DaSH@NAACL 2021, IUI 2021 (demo), NAACL 2021
       ACL 2020, ACL 2025 (Area Chair), IJCAI 2020, AAAI (2021, 2020), ICDE 2020 (industry track)
       IEEE BigData 2019, WebDB@SIGMOD 2018
    Journal referee:  ACM TODS (2018, 2019), IEEE TKDE (2019)

    Skills

    Programming:  Python, Java
    Deep Learning  Pytorch, Pytorch-transformer
    Web Development  Angular, Angular Material, Django, Javascript, Typescript, HTML, W3.CSS
    Distributed Computing & Cloud Computing  Spark (PySpark), AWS
    Others  LaTeX
    Visitors since May 2019
    Locations of Site Visitors
     counter Visits